

CX1S3

User Manual

V1.0.0 2023.12

Safety Instruction

Before using the product, please read and follow the instructions of this manual carefully, and refer to relevant national and international safety regulations.

AAttention

Please do not disassemble or modify the lidar privately. If you need special instructions, please consult our technical support staff.

∆Laser Safety Level

The laser safety of this product meets the following standards:

- IEC 60825-1:2014
- 21 CFR 1040.10 and 1040.11 standards, except for the deviations (IEC 60825-1, third edition) stated in the Laser Notice No. 56 issued on May 8, 2019. Please do not look directly at the transmitting laser through magnifying devices (such as microscope, head-mounted magnifying glass, or other forms of magnifying glasses).

Eye Safety

The product design complies with Class 1 human eye safety standards. However, to maximize self-protection, please avoid looking directly at running products.

∆Safety Warning

In any case, if the product is suspected to have malfunctioned or been damaged, please stop using it immediately to avoid injury or further product damage.

Housing

The product contains high-speed rotating parts, please do not operate unless the housing is fastened. Do not use a product with damaged housing in case of irreparable losses. To avoid product performance degradation, please do not touch the photomask with your hands.

Operation

This product is composed of metal and plastic, which contains precise circuit electronic components and optical devices. Improper operations such as high temperature, drop, puncture or squeeze may cause irreversible damage to the product.

Power Supply

Please use the connecting cable and matching connectors provided with the lidar to supply power. Using cables or adapters that are damaged or do not meet

the power supply requirements, or supply power in a humid environment may cause abnormal operation, fire, personal injury, product damage, or other property loss.

Light Interference

Some precise optical equipment may be interfered with by the laser emitted by this product, please pay attention when using it.

Vibration

Please avoid product damage caused by strong vibration. If the product's mechanical shock and vibration performance parameters are needed, please contact us for technical support.

Radio Frequency Interference

The design, manufacture and test of this product comply with relevant regulations on radiofrequency energy radiation, but the radiation from this product may still cause other electronic equipment to malfunction.

Deflagration and Other Air Conditions

Do not use the product in any area with potentially explosive air, such as areas where the air contains high concentrations of flammable chemicals, vapours or particles (like fine grains, dust or metal powder). Do not expose the product to the environment of high-concentration industrial chemicals, including near evaporating liquefied gas (like helium), so as not to impair or damage the product function.

Maintenance

Please do not disassemble the lidar without permission. Disassembly of the product may cause its waterproof performance to fail or personal injury.

TABLE OF CONTENTS

1. PRODUCT PROFILE	1
1.1 OVERVIEW	1
1.2 MECHANISM	1
1.3 SPECIFICATION	1
1.4 DIMENSIONS	2
2. ELECTRICAL INTERFACE	6
2.1 POWER SUPPLY	6
2.2 ELECTRICAL INTERFACE	6
3. GET READY	8
3.1 LIDAR CONNECTION	8
3.2 SOFTWARE PREPARATION	8
4. USAGE GUIDE	10
4.1 OPERATION UNDER WINDOWS OS	10
4.1.1 Lidar Configuration	10
4.1.2 CX1S3 Windows Client Interface	11
4.1.3 Operation Procedure	13
4.1.4 Point Cloud Data Parsing	14
4.1.5 Note	14
4.2 ROS DRIVER OPERATION UNDER LINUX OS	18
4.2.1 Hardware Connection and Test	18
4.2.2 Software Operation Example	19
5. COMMUNICATION PROTOCOL	21
5.1 MSOP PROTOCOL	21
5.1.1 Format	22
5.1.2 Data Package Parameter Description	23
5.2 DIFOP PROTOCOL	
5.3 UCWP Protocol	
5.3.1 Configuration Parameters and Status Description	

5.3.2 Configuration Package Example	31
6. TIME SYNCHRONIZATION	32
6.1 GPS SYNCHRONIZATION	32
6.2 GPTP SYNCHRONIZATION	33
6.3 LIDAR INTERNAL TIMING	35
7. ANGLE AND COORDINATE CALCULATION	36
7.1 VERTICAL ANGLE	36
7.2 HORIZONTAL ANGLE	36
7.3 DISTANCE VALUE AND INTENSITY	36
7.4 CARTESIAN COORDINATE REPRESENTATION	37
8. ACCURATE TIME CALCULATION	38
8.1 SINGLE ECHO MODE	38
8.1.1 Calculation of Data Packet End Time	38
8.1.2 Accurate Time Calculation of Channel Data	38
8.2 Dual Echo Mode	39
8.2.1 Calculation of Data Packet End Time	39
8.2.2 Accurate Time Calculation of Channel Data	39
APPENDIX A. MAINTENANCE	40
APPENDIX B. TROUBLESHOOTING	41

1. Product Profile

1.1 Overview

The CX1S3, a single-line hybrid solid-state LiDAR, is developed based on the CX126S3 hybrid solid-state LiDAR. With the advantages of high scanning speed, high resolution, and high reliability, which is suitable for large-scale operations, the CX1S3 well meets the requirements of 2D modeling detection and obstacle avoidance in industrial scenarios, and provides accurate distance and reflectivity information with a detection range up to 150 m (@10%).

1.2 Mechanism

The CX1S3 hybrid solid-state lidar adopts the Time of Flight method. The lidar starts timing (t_1) when the laser pulses are sent out. And when the laser encounters the target object and the light returns to the sensor unit, the receiving end stops timing (t_2) .

Distance = Speed of Light* $(t_2 - t_1)/2$

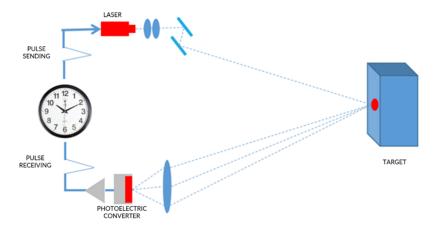


Figure 1.1 Mechanism of the CX1S3 Lidar

1.3 Specification

Table 1.1 Specifications of CX1S3

Model	CX1S3
Detection Method	ToF
Wavelength	905 nm
Laser Class	Class 1 (eye-safe)
Channels	1

1

Detection Range	150 m (@10% reflectivity)				
Range Accuracy			±3 cm		
Data Point Generating Rate (Single		1 5	0 000+-	/	
Echo Mode)		13	0,000 pts	/sec	
Divergence Angle			3*3 mrad	ł	
Horizontal FOV			120°		
Scanning Frequency	30 Hz	60 Hz	90 Hz	120 Hz	150 Hz
Horizontal Angular Resolution	0.024°	0.048°	0.072°	0.096°	0.12°
Communication Interface	Gigab	yte Indust	rial Etherr	net (1000 B	Base-T)
Time Source	GPS; gPTP				
Operating Voltage	9 V ~32 VDC				
Operating Temperature	-40℃ ~+85℃				
Storage Temperature	-40°C ~+105°C				
Shock Test	500 m/sec², lasting for 11 ms				
Vibration Test	5 Hz ~2000 Hz, 3G rms				
IP Grade	IP 6K9K				
Dimensions	110*100.4*45 mm				
Weight	635 g				

1.4 Dimensions

There are 4 mounting holes and 2 positioning holes at the bottom of CX1S3 lidar. Four M4*10 (hexagon socket head cap screws) mechanical screws with spring washers and flat washers are needed for locking and fixing the lidar. See the outline dimension drawing shown in Figure 1.2.

Mounting requirements: (1) Mounting screws: M4*10, hexagon socket head cap screws; (2) Screws: GB70; (3) Spring washers: GB93; (4) Flat washers: GB93.1; (5) Electric Torque Screwdriver: 5NM.

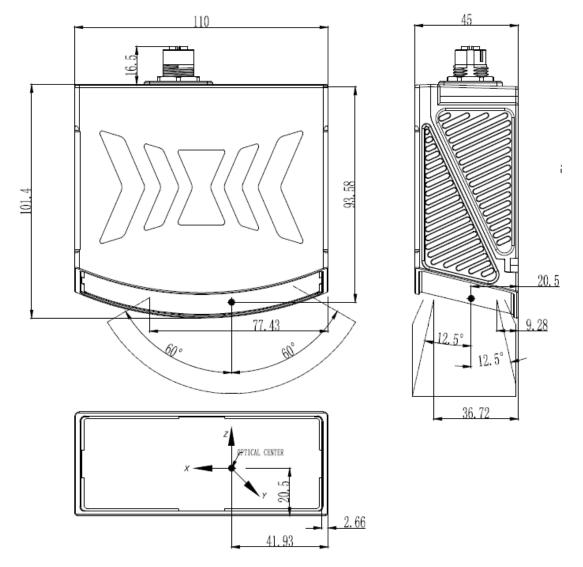


Figure 1.2 CX1S3 Lidar Dimension

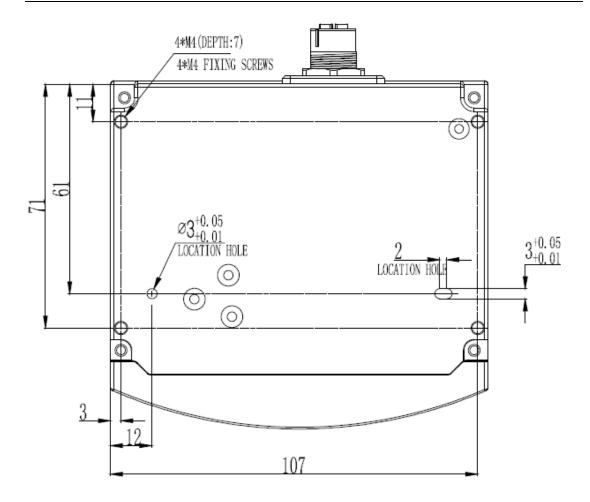


Figure 1.3 CX1S3 Mounting Dimensions

The CX1S3 lidar utilizes mirror rotation and special optical design to scan 120° horizontally. Figure 1.4 shows the optical center position, which is also the coordinate origin of the host computer display software.

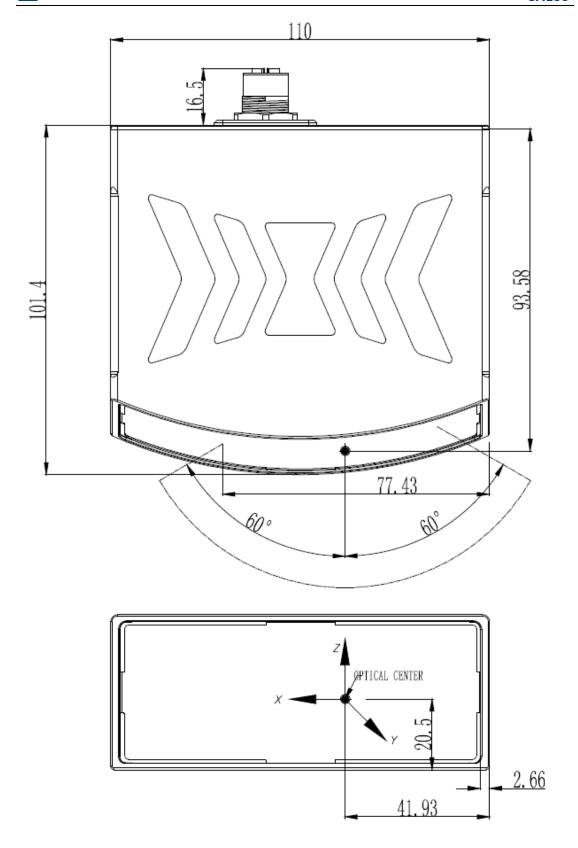


Figure 1.4 The Optical Center of the CX1S3

2. Electrical Interface

2.1 Power Supply

The power input range of the CX1S3 lidar is 9 V \sim 32 VDC. If other DC power supply is adopted, the recommended output voltage of the power supply is 24 VDC. Please note that DC 9 V and 32 V are short-term power supply in extreme environment, which cannot be used as working voltage. When the voltage output fluctuates, the lidar may not be able to work normally.

The maximum output current should be ≥2 A (the lidar requires a large instantaneous current when starting, and a small starting current may cause its failure to start normally). The output ripple noise should be <120 mVp-p and output voltage accuracy <5%.

The higher the power supply voltage and the stronger the discharge capacity, the more severe the impact on the lidar (such as powered by direct vehicle power supply without adapters and interface boxes). Therefore, it is necessary to use high-power TVS transient suppression diodes to protect the lidar to avoid damage.

The line length of the lidar power supply is 5~10 m, and the power supply voltage needs to be over 12 V but less than 32 V. If the line length is more than 10 m, then it is recommended to use a 220 V AC adapter nearby for power supply (DC long-distance power supply is not recommended).

2.2 Electrical Interface

There are 2 interfaces on the side of the CX1S3 lidar, one is the industrial Ethernet interface: M12 X CODE 8 PIN, model number from supplier: CNT PNA: L102-M12-Z08X09. The other interface is for power supply: M12 A CODE 12 PIN, model number from supplier: CNT PNA: L102-M12-Z12A23B. The definition of the interfaces is shown as below.

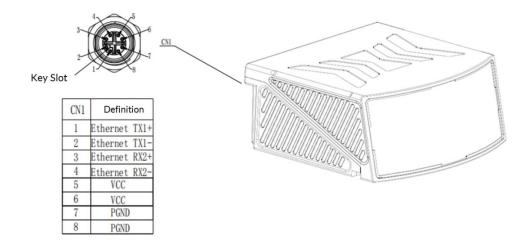


Figure 2.1 The Interface of CX1S3

The cable connecting to the CX1S3 lidar interface is one 2-in-1 power supply and Ethernet cable. As shown below.

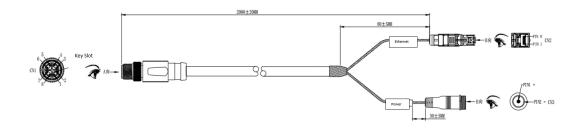


Figure 2.2 2-in-1 Power Supply and Ethernet cable

Table 2.1 Wiring Definition of the Cable

CN1	Definition	Color	CN2	CN3
1	TD_P	Light Orange	1	/
2	TD_N	Orange	2	/
3	RD_P	Light Blue	3	/
4	RD_N	Blue	6	/
5	VCC	Red	/	1
6	VCC	Yellow	/	1
7	GND	White	/	2
8	GND	Black	/	2
Shell	PE	Braided Wire	Shell	/

3. Get Ready

3.1 Lidar Connection

To get ready for the lidar operation, please connect the lidar, host computer, and power supply. Also, please remove the protective film on the optical windows in case the detecting performance is influenced.

3.2 Software Preparation

The CX1S3 lidar can be operated under both Windows operating system and Linux operating system. Software needed is as follows:

Wireshark: to capture the ARP (Address Resolution Protocol) packets.

Note: Wireshark is a third-party software that you need to download by yourself. LeiShen Intelligent bears no responsibility to any copyright and commercial disputes caused using this software.

To view the point cloud data generated by the lidar, you can either use the Windows Client or the ROS Drive Program.

Windows Client (optional): a host computer software to view point cloud image under Windows operating system, which is also referred to as "point cloud display software".

Software Acquisition

This CX1S3 Windows Client has been pre-stored in the USB flash drive provided along with the lidar. It can also be obtained from the sales or technical support personnel. No installation is required to the client.

Operating Environment

This software can only run under the Windows x64 operating system at present. The computer configuration requirements for installing the software are: CPU: Intel(R) Core (TM) i5 or higher; Graphics Card: NVIDIA GeForce GTX750 or higher achieves the best effect, otherwise the display of the point cloud may be affected. And the computer graphics card must support OpenGL 2 or higher graphics acceleration to display the point cloud normally.

Supplemental Software

To use the Windows Client, the installation of the **WinPcap** third-party library is necessary. This software has also been pre-stored in the USB flash drive provided with the lidar.

To install the WinPcap software, please follow the following steps:

- **Step 1.** Insert the USB driver into computer port and open it.
- **Step 2.** Find the WinPcap installation file and double-click it to initiate the installation.
- **Step 3.** Click "next" to enter the installation path selection interface.
- **Step 4.** Click "next" to enter the installation interface.
- **Step 5.** Click the "install" button, and wait for the installation to be completed.
- **ROS Drive Program (optional)**: to view the point cloud data under Linux operating system. This program has been pre-stored in the USB flash drive provided with the lidar. It can also be obtained from the sales or technical support personnel. No installation is required.

4. Usage Guide

This part states operation instructions of the Windows Client and ROS drive.

4.1 Operation Under Windows OS

4.1.1 Lidar Configuration

The default IP address and port number of the lidar network are as follows:

Table 4.1 Default Lidar Network Configuration

	IP Address	UDP Device Package Port	UDP Data Package Port
Lidar	192.168.1.200	2368 (Fixed)	2369 (Fixed)
Computer	192.168.1.102	2369	2368

Note:

The lidar IP (local IP) and the computer IP (destination IP) cannot be set to the same, otherwise the lidar will not work normally.

In the multicast mode, no two destination ports should be set to the same port number.

The lidar IP range are forbidden to be set to

- 1) Class D IP address (multicast address: i.e. 224.0.0.0~ 239.255.255.255)
- 2) Class E IP address (reserved address: i.e. 240.0.0.0~ 255.255.255.254)
- 3) Broadcast address (i.e. 255.255.255.255 and xx.x.255 for each network segment)
- 4) Special class IP address (0.x.xx and 127.xxx)

The lidar destination IP are forbidden to be set to

- 1) Class E IP address (i.e. 240.0.0.0 to 255.255.255.254)
- 2) Special class address (0.x.xx and 127.x.x.x)

When connecting to the lidar, if the computer IP and the lidar IP are in different network segments, you need to set the gateway; if they are in the same network segment, you only need to set different IPs, for example: 192.168.1.x, and the subnet mask is 255.255.255.0. If you need to find the Ethernet configuration information of the lidar, please connect the lidar to the computer and use "Wireshark" to capture the ARP packet of the device for analysis. For the feature identification of the ARP packet, see the figure below.

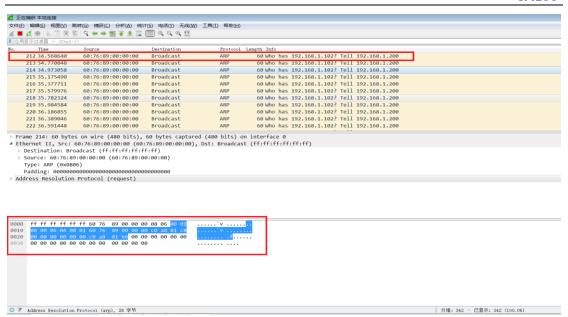


Figure 4.1 Wireshark captures APR packets

4.1.2 CX1S3 Windows Client Interface

The software interface includes menu area, tool bar area, 3D window area, data table area, etc.

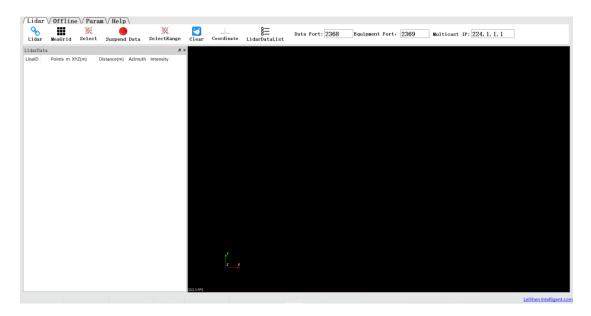


Figure 4.2 Initial Interface

Note: In the point cloud display area (right side), with 20 circles and 40*40 grids, the radius of each two adjacent circles differs by 10 m. The difference between each two grids (horizontal or longitudinal) is 10 m. And the radius of the outermost circle is 200 m.

The grids and circles make it easy to view the position of the point cloud. The

direction of the coordinate axis in the 3D display interface is consistent with the direction of the X-Y axis in the point cloud reference system.

Note: To view the software version, click "Help->About" in the tool bar.

Point cloud display interface supports the following operations:

- 1) Zoom in/out the display interface with the mouse wheel; hold the right mouse button and drag it up/down to zoom in/out.
- 2) Hold the left mouse button and drag it to adjust the angle of view;
- 3) Hold the mouse wheel and drag it to pan the display interface; or hold the shift key on the keyboard and the left mouse button to pan the interface.

Menu button function introduction

Lidar Menu

Button	Description
€	Click to start receiving display data
	Show/hide measurement grid
Select	Mark the selected points in the point cloud image
Pause	Pause point cloud image and data generating
SelectRange	Select point clouds from different angles
	Clear screen
	Show/hide coordinate
<u> </u>	Show/hide the column on the left
Front Top Left	Three-view option: set the observation angle from top, front, and left.

Offline Menu

Button	Description
Open	Open offline data
Record	Record and save data, valid only when lidar receives data in real time
H	Skip to the beginning

4	When paused, view the previous frame; When playing, rewind (click multiple times to select 2x, 3x, 1/2x, 1/4x and 1x speed)	2k 3k 12k 12k
(Click to start playing after the point cloud file When playing, click to pause	e is loaded
(b)	When paused, view the next frame; When playing, fast forward (click multiple times to select 2x, 3x, 1/2x, 1/4x and 1x speed)	2k 3k 13k 13k
Н	Skip to the end	
198	Drag the progress bar or enter the frame num position	ber to skip to the specified

Parameter Menu

Button	Description	
Parameter	Open lidar parameter form	The upper part of the form shows the lidar configuration. The parameters include local IP, destination IP, subnet mask, gateway, data port, device port, and motor speed setting, whether to obtain the local time, Mac address information, and device packet sending interval. The lower part shows the real-time status information. According to the DIFOP status packet sent out regularly by the lidar, the current status information is displayed, including GPS position information, satellite time information, motor speed, current lidar IP, and current lidar port number.
© Channel	Select laser channel	Vertical Angle column represents the vertical angle of the corresponding channel data; Channel column represents the data sequence number corresponding to the channel; Laser ID represents the channel number of the lidar.
X a SaveData	Save the data in .csv format	The data includes Points_X, Points_Y, Points_Z, Laser_id, Azimuth, Distance, Intensity.
⊘ DualEcho ▼	Set the mode of echo	Dual echo, strongest echo, second echo
Intensity •	Set the display mode of the point cloud	Intensity, laser ID, azimuth angle, etc.

Note: The computer graphics card must support OpenGL 2 or higher graphics acceleration to display the point cloud normally.

4.1.3 Operation Procedure

Step 1. Set the data port number (default 2368), device port (or telemetry port

in the picture below) number (default 2369).

Step 2. When the power supply of the lidar is connected to the network cable,

click to receive the lidar data in real time.

Step 3. The data table contains PointID, Points_m_XYZ, Azimuth, Distance, Intensity, Laser_id, timestamp, in which PointID is the point number; Points_m_XYZ are the coordinates; Azimuth is the azimuth angle; Distance is the distance value; Intensity is the reflection intensity; Laser_id is the lidar channel number and timestamp is the timestamp value.

4.1.4 Point Cloud Data Parsing

If you need to parse lidar data, please follow the steps below:

- **Step 1**. Parse the data package to obtain the relative horizontal angle, ranging information, intensity data and nanosecond timestamp information of each laser;
- **Step 2**. Read the device package to obtain information such as the horizontal correction angle value, UTC time (GPS, gPTP time service) and the current configuration of the device;
- **Step 3**. Obtain the vertical angle of each line according to the laser beam distribution;
- **Step 4**. According to the distance measurement value, vertical angle and the calculated horizontal angle of the point cloud data, the XYZ coordinate values are obtained;
- **Step 5**. If necessary, calculate the precise time of the point cloud data through UTC time, nanosecond timestamp, light-emitting time of each laser, as well as single and dual echo modes;
- **Step 6**. Reconfigure information such as Ethernet, PPS synchronization horizontal angle, motor speed and other information as needed, and pack the configuration package protocol.

4.1.5 Note

Notice about the lidar setting and usage:

 It is not possible to use Windows Client to receive data in two processes (open twice at the same time) in the same computer. The port occupancy of the PC is generally exclusive, so the other software that uses the same process or the same port number cannot work normally after a process is

bound to a specified port number. When Windows Client detects that the port is occupied, it will prompt that the communication network port configuration has failed, and automatically close the software. You need to close the software process that occupied the port, and reopen the Windows Client to use it normally.

- 2) At the same time, since Qt is adopted in the low-level software development, please create English paths when naming files and path folders.
- 3) Since the port number of the CX1S3 lidar can be modified through user configuration, and the lidar sends data to the host computer through the preset destination IP and port. Therefore, when the local laptop or desktop computer and other devices are receiving data, their IP address should be the same as the destination IP, and the port bound to the local host computer program needs to be the same as the destination port number, as shown in the figure below (these are the data packet parameters captured and analyzed by Wireshark software). The data in the red boxes indicate the destination IP and port number of the lidar.

Figure 4.3 Data Packet Parameters Captured by Wireshark Software

Please set the host computer IP according to the following steps:

Step 1. In the Control Panel -> Network and Internet -> Network Sharing Center, click the "local connection" button.

Step 2. Click "Properties" in the pop-up status box, and click "TCP/IPv4 protocol" in the pop-up properties box, as shown in the figure below.

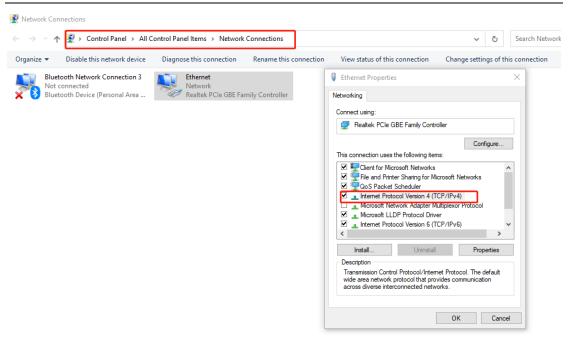


Figure 4.4 Network Connections

Step 3. In the TCP/IPv4 property settings, set the IP address to the lidar's destination IP (The default destination IP of the lidar is 192.168.1.102), and the subnet mask is set to 255.255.255.0.

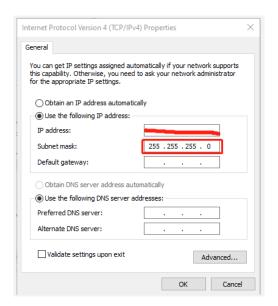


Figure 4.5 IP Address and Subnet Mask Setting

4) Since the lidar display software needs to obtain a large number of data packets through the network in a short time, it may be considered as a malicious program by the network firewall and be prohibited. Therefore, there may be situations in which the data packet has been sent to the computer by the Wireshark software, but the point cloud display software cannot display it.

To address this problem, in Control Panel -> System and Security -> Windows

Firewall Settings, click to allow this program to pass through Windows Firewall, setting steps are as shown in the figures below:

- **Step 1.** In Control Panel -> System and Security -> Windows Defender Firewall, click "Allow an app or feature through the Windows Defender Firewall".
- **Step 2.** Browse to find the software installation path, select it and click OK.
- **Step 3.** Tick the part marked in the red box according to the nature of your network, and click OK to see the data.

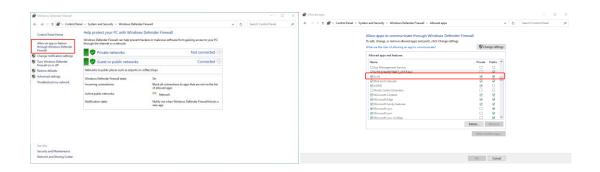


Figure 4.6 Windows Defender Firewall Setting

Computer graphics settings

When installing the lidar display software on a desktop or laptop with dual graphics cards, the default global settings of the computer operating system is to use the global settings (automatic selection: integrated graphics), which affects the display efficiency of the software. In order to ensure the use and display efficiency of the software, you need to manually set the computer graphics.

The condition of dual graphics cards can be checked in the computer configuration, and the condition of the display adapter can be seen in My Computer->Properties->Device Manager.

Take a laptop with Intel(R)HD Graphics 530 integrated graphics and NVIDIA GeForce GTX 960 discrete graphics as an example. The setting steps to manually switch the applicable graphics card of the software to high-performance discrete graphics card are as follows:

- **Step 1.** Right-click on a blank space on the desktop to pop up a right-click menu and select "NVIDIA Control Panel".
- Step 2. Select the "Manage 3D Settings" in the NVIDIA Control Panel interface.
- Step 3. Click the "Program Settings" button in the Manage 3D Settings interface.
- **Step 4**. Click the "Add" button on the Manage 3D Settings interface.

Step 5. Click the "Browse" button in the pop-up interface.

Step 6. Find the application file (.exe file) of the software according to its installation path in the pop-up browsing interface.

Step 7. Click "OK" to automatically return to the NVIDIA control panel, select the high-performance NVIDIA processor in the combo box of the preferred graphics processor for this program in Option -2., and click "Apply" in the lower right corner.

After the computer application is set, close the NVIDIA Control Panel to complete the setting.

4.2 ROS Driver Operation Under Linux OS

4.2.1 Hardware Connection and Test

Step 1. Connect the lidar to the internet and power supply

Step 2. Set the computer wired IP according to the destination IP of the lidar, (whether the computer wired IP is set successfully can be checked by the ifconfig command, as shown in the figure, the destination IP is 192.168.1.102)

```
ls@lidar:~$ ifconfig
enp3s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.1.102 netmask 255.255.255.0 broadcast 192.168.1.255
    inet6 fe80::8f7d:d4f9:2c6a:850d prefixlen 64 scopeid 0x20<link>
    ether f0:2f:74:a1:99:53 txqueuelen 1000 (以太网)
    RX packets 377598 bytes 78074323 (78.0 MB)
    RX errors 0 dropped 1272 overruns 0 frame 0
    TX packets 958224 bytes 1418001117 (1.4 GB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Figure 4.7 ifconfig Command Feedback

Note: The default destination IP of the lidar is 192.168.1.102, and the computer must be configured according to the actual lidar destination IP. After setting the IP for the first time, please restart the lidar.

- **Step 3.** After the lidar is powered on and restarted, check the wired connection icon of the computer to see whether it is connected properly.
- **Step 4.** Open the terminal: ping the lidar IP, and test whether the hardware is connected normally. If the ping is successful, then the data is received, otherwise check the hardware connection.
- **Step 5.** Use "sudo tcpdump -n -i eth0" (here eth0 is the name of the wired network device, see the device name of ifconfig wired connection display for details) to view the data packets sent by the lidar (as shown in the figure, there are 1212-byte data packets sent by the lidar to the destination, which means

that the lidar data is sent normally).

```
<mark>ls@lidar:~</mark>$ sudo tcpdump -ni enp3s0
[sudo] ls 的密码:
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on enp3s0, link-type EN10MB (Ethernet), capture size 262144 bytes
10:41:44.738778 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP, length 1212
10:41:44.739965 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP, length 1212
10:41:44.741178 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP, length 1212
10:41:44.742370 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP, length 1212
10:41:44.743707 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP, length 1212
10:41:44.744850 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
                                                                        length 1212
10:41:44.746045 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
                                                                        length 1212
10:41:44.747198 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
                                                                        length 1212
10:41:44.748452 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
                                                                        length 1212
10:41:44.749645 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
                                                                        length 1212
10:41:44.750761 IP 192.168.1.201.2369 > 192.168.1.102.2370: UDP,
```

Figure 4.8 sudo tcpdump -n -i eth0 Command Feedback

4.2.2 Software Operation Example

Note: The following instructions are for reference only. Please refer to the README file of the ROS drive bag in the customer service pack for details.

Step 1. Establish a workspace and build a compilation environment

```
mkdir -p ~/leishen_ws/src cd ~/leishen_ws
```

Note: The workspace can be named arbitrarily. For example, "leishen_ws" can be changed to any name.

Step 2. Download the lidar driver and dependency package

The driver and dependency package can also be obtained directly from our website or customer service. Copy the obtained driver file to the newly created workspace "leishen_ws/src", and use the "tar -xvf" command to decompress it.

Step 3. Compile and package

```
cd ~/leishen_ws
catkin_make
```

Step 4. Run the program

```
source ~/leishen_ws /devel/setup.bash
roslaunch lslidar_ch_decoder lslidar_ch.launch
```

Reopen a terminal again and execute the following command:

rosrun rviz rviz

Note 1): If the lidar destination port and motor speed are modified, please open "Islidar_ch.launch" to modify the configuration accordingly. The default data packet port is 2368, device packet port is 2369, IP address is 192.168.1.200.

Note 2): If timeout appears, it means that the driver has no data reception. Please check the hardware connection.

Note 3): If steps 1, 2, and 3 have been completed, next time after the "Displays Window" is reopened, start directly from step 4.

Step 5. Display the data detected by the lidar

In the "Displays Window" that pops up, modify the value of "Fixed Frame" to "laser_link". Click the "Add" button at the same time, and click "PointCloud2" under "By topic" to add a multi-line point cloud node.

5. Communication Protocol

Lidar data output and configuration use Gigabit Ethernet UDP/IP communication protocol. There are 3 UDP packet protocols, among which MSOP packet length is 1254 bytes (42 bytes Ethernet header and 1212 bytes payload). DIFOP and UCWP are 1248 bytes (42 bytes Ethernet header and 1206 bytes payload) Lidar supports unicast, broadcast and multicast communication.

The communication protocols of the lidar are:

Main data Stream Output Protocol (MSOP): outputting the distance, angle, intensity and other information measured by the lidar;

Device Information Output Protocol (DIFOP): outputting the current status of lidar and accessory equipment and various configuration information;

User Configuration Write Protocol (UCWP): setting the configuration parameters of the lidar.

Protocol Name	Abbr.	Function	Length	Transmission Interval
Main data Stream Output Protocol	MSOP	Outputting measured data and timestamp	1254 bytes	about 0.074 ms;
Device Information Output Protocol	DIFOP	Outputting parameter configuration and status information	1248 bytes	1s (for 1 packet)
User Configuration Write Protocol	UCWP	Inputting user configured device parameters	1248 bytes	Not Fixed

Table 5.1 UDP Packet Protocol

5.1 MSOP Protocol

The data package outputs measured data such as the angle value, distance value, intensity value, and timestamp of the point cloud. The data of the package adopts Big-Endian mode.

The data package includes a 42-byte Ethernet header and a 1212-byte payload, with a total length of 1254 bytes.

Single echo mode: The payload consists of 1197 bytes of point cloud data and 15 bytes of additional information (including 3 bytes reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes of Factory).

Dual echo mode: The payload consists of 1199 bytes of point cloud data and 13 bytes of additional information (including 1 byte reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes

of Factory).

5.1.1 Format

The CX1S3 lidar supports single echo mode which measures the most recent echo value and dual echo mode which measures the most recent and second recent echo values.

Single Echo Mode

Each MSOP data packet contains 1212 bytes of data. Each packet of data contains 171 points, that is, 171*7=1197 bytes, and the frame tail is 15 bytes (including 3 bytes reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes of Factory). See the table below:

Header (42 bytes)			
	Measure point 1		
	Measure point 2		
Measure point 3			
Measure point 171			
Reserved (3 bytes)			
UTC Time (6 bytes)	Timestamp (4 bytes)	Factory (2 bytes)	

Note: The lidar displays the point cloud image by frame. In the MSOP data package, if the data of the first point is FF AA BB CC DD EE 11, then it is the start mark of the point cloud frame (the lidar scans to the far right at this time). The start mark can be anywhere in a packet of data, not necessarily the packet header. This point is not displayed as point cloud data, but is only a judgment mark for the beginning of an image frame.

Dual Echo Mode

Each MSOP data packet contains 1212 bytes of data. Each packet of data contains 109 points, that is, 109*11=1199 bytes, and the frame tail is 13 bytes (including 1 byte reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes of Factory). See the table below:

Header (42 bytes)
Measure point 1
Measure point 2

22

	Measure point 3				
Measure point 109					
Reserved (1 byte)					
UTC Time (6 bytes)	Timestamp (4 bytes)	Factory (2 bytes)			

Note: The lidar displays the point cloud image by frame. In the MSOP data package, if the data of the first point is FF AA BB CC DD EE 11 22 33 44 55, then it is the start mark of the point cloud frame (the lidar scans to the far right at this time). The start mark can be anywhere in a packet of data, not necessarily the packet header. This point is not displayed as point cloud data, but is only a judgment mark for the beginning of an image frame.

5.1.2 Data Package Parameter Description

Ethernet Header

The Ethernet header has a total of 42 bytes, as shown in the table below.

Ethernet Header: 42 Bytes				
Name	S/N	Information	Offset	Length (byte)
Ethernet II MAC	0	Destination	0	6
Ethernet ii MAC	1	Source	6	6
Ethernet Packet Type	2	Туре	12	2
Internet Protocol	3	Version, Header Length, Differentiated Services, Field, Total Length, Identification, Flags, Fragment Offset, Time to Live, Protocol, Header, Checksum, Source IP Address, Destination IP Address	14	20
UDP Port Number	4	Lidar Port (0x0941, represent 2369)	34	2
ODF FOIL NUMBER	5	Computer Port (0x0940, represent 2368)	36	2
UDP Length &	6	Length (0x04BE, represent 1214 bytes)	38	2
Sum Check	7	Sum Check	40	2

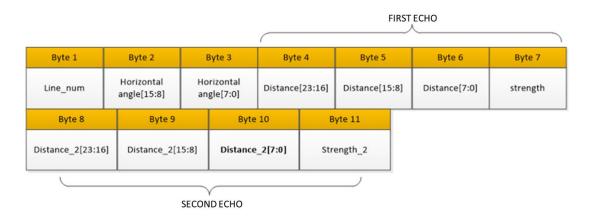
Subframe (Single Echo Mode)

The subframe is the effective data area of the data packet, which contains a total of 1197 bytes, including 171 points, that is, 171*7=1197 bytes. Take the first measure point as an example:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Line_num	Horizontal angle[15:8]	Horizontal angle[7:0]	Distance[23:16]	Distance[15:8]	Distance[7:0]	strength

Byte 1 represents the line number, which is 0x00 by default.

23


Byte 2 and Byte 3 represent the horizontal angle, whose data are stored in Big-Endian mode. The unit is 0.01 degrees. For example, 0x11AD=4525, that is 45.25°.

Byte 4, Byte 5, and Byte 6 represent the distance value. Their data are stored in Big-Endian mode. The two high bytes are the integer part, whose unit is "cm"; and the last byte is the decimal part, whose unit is 1/256 cm. To analyze the distance value, for example: the distance value in the obtained data packet is represented by the hexadecimal number 0x02,0x18,0x32, and the first two bytes are composed of 16-bit unsigned data, that is: 0x0218, which is converted to decimal distance value: 536 cm. The last byte is the decimal part, 0x32 equals 50 in decimal, that is, 50*1/256 cm=0.1953125 cm. Then the two parts add up to 536. 1953125 cm.

Byte 7 represents echo strength, and the value range is 0-255. (Echo strength can reflect the energy reflection characteristics of the measured object in the actual measurement environment. Therefore, the echo strength can be used to distinguish objects with different reflection characteristics.)

Subframe (Dual Echo Mode)

The subframe is the effective data area of the data packet, which contains a total of 1199 bytes, including 109 points, that is, 109*11=1199 bytes. Take the first measure point as an example:

Byte 1 represents the line number, which is 0x00 by default.

Byte 2 and Byte 3 represent the horizontal angle, whose data are stored in Big-Endian mode. The unit is 0.01 degrees. For example, 0x11AD=4525, that is 45.25°.

Byte 4, Byte 5, and Byte 6 represent the first echo distance value. Their data are stored in Big-Endian mode. The two high bytes are the integer part, whose unit is "cm"; and the last byte is the decimal part, whose unit is 1/256 cm. To analyze the distance value, for example: the distance value in the obtained data

packet is represented by the hexadecimal number 0x02,0x18,0x32, and the first two bytes are composed of 16-bit unsigned data, that is: 0x0218, which is converted to decimal distance value: 536 cm. The last byte is the decimal part, 0x32 equals 50 in decimal, that is, 50*1/256 cm=0.1953125 cm. Then the two parts add up to 536. 1953125 cm.

Byte 7 represents the first echo strength, and the value range is 0-255. (Echo strength can reflect the energy reflection characteristics of the measured object in the actual measurement environment. Therefore, the echo strength can be used to distinguish objects with different reflection characteristics.)

Byte 8, Byte 9 and Byte 10 represent the second echo distance value. Their data are stored in Big-Endian mode. The two high bytes are the integer part, whose unit is "cm"; and the last byte is the decimal part, whose unit is 1/256 cm. The distance value analysis method is the same as the first echo.

Byte 11 represents the second echo strength, and the value range is 0-255. (Echo strength can reflect the energy reflection characteristics of the measured object in the actual measurement environment. Therefore, the echo strength can be used to distinguish objects with different reflection characteristics.)

Azimuth

The resolution of the horizontal angle value is determined according to the motor speed. The horizontal angle defines the right side of the lidar as 0°, the left side as 180°, and the vertical direction as 90°. The range of the lidar's horizontal direction is 30° to 150°, as shown in the figure below.

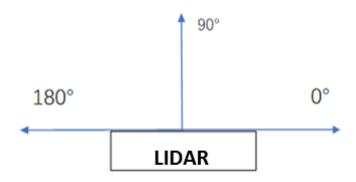


Figure 5.1 The Azimuth of the Lidar

Additional Information

The additional information of the single echo mode is 15 bytes in length, including 3 bytes reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes of Factory.

Additional Information (single echo mode): 15 bytes			
Name	Length (byte)	Function	

Reserved		3	Reserved	
UTC time		6	Year, month, day, hour, minute and second of the UTC time	
Timestamp		4	Timestamp (ns)	
Footom	Vendor Information	1	0x7D represents the CX1S3 lidar	
Factory	Echo Information	1	0x1 represents single echo lidar 0x2 represents dual echo lidar	

The additional information of the dual echo mode is 13 bytes in length, including 1 byte reserved, 6 bytes of UTC time of year, month, day, hour, minute and second, 4 bytes of Timestamp and 2 bytes of Factory.

Additional Information (dual echo mode): 13 bytes						
Name		Length (byte)	Function			
Reserved		1	Reserved			
UTC time		6	Year, month, day, hour, minute and second of the UTC time			
Timestamp		4	Timestamp (ns)			
Factory	Vendor Information	1	0x7D represents the CX1S3 lidar			
Factory	Echo Information	1	0x1 represents single echo lidar 0x2 represents dual echo lidar			

- 1) When there is a GPS device inputting PPS signal to the lidar, the timestamp is generated according to the PPS time as the cycle time, and the range of the timestamp is 0-999,999,999 (ns);
- 2) When there is an external synchronization device inputting PPS signal, the timestamp is generated according to the external synchronization PPS time as the cycle time, and the range of the timestamp is 0-999,999,999 (ns);
- 3) When there is no synchronization device inputting PPS signal, the lidar generates timestamp with a period of 1 second. The range of the timestamp is 0-999,999 (ns).

5.2 DIFOP Protocol

The device package outputs read-only parameters and status information such as version number, Ethernet configuration, motor speed and operating status, and fault diagnosis. The data of the device package adopts Big-Endian mode.

The device package includes a 42-byte Ethernet header and a 1206-byte payload, with a length of 1248 bytes. The payload is composed of an 8-byte frame header, 1196-byte data and a 2-byte frame tail.

Figure 5.2 Data Format of the Device Package

		Ethernet Header: 42 bytes		
Name	S/N	Information	Offset	Length (byte)

Ethernet II MAC	0	Destination	0	6			
Ethernet II MAC	1	Source	6	6			
Ethernet Packet Type	2	Туре	12	2			
Internet Protocol	3	Version, Header Length, Differentiated Services, Field, Total Length, Identification, Flags, Fragment Offset, Time to Live, Protocol, Header, Checksum, Source IP Address, Destination IP Address	14	20			
UDP Port Number	4	Lidar Port (0x0940, represents 2368)	34	2			
ODP Port Number	5	Computer Port (0x0941, represents 2369)	36	2			
UDP Length &	6	Length (0x04BE, represents 1214 bytes)	38	2			
Sum Check	7	Sum Check	40	2			
	Payload: 1206 bytes						
Name	S/N	Information	Offset	Length (byte)			
Header	0	Device Package Identification Header	0	8			
	1	Motor Speed	8	2			
	2	Ethernet Configuration	10	22			
	3	Reserved	32	8			
	4	Lidar Rotation / Stationary	40	2			
	5	Device Flow Packet Interval	42	2			
	6	Clock Source Selection	44	1			
Data	7	Standby Mode	45	1			
	8	Phase Lock Enable	46	1			
	9	Phase Lock Angle Setting	47	2			
	10	Reserved	49	3			
	11	GPS Time	52	6			
	12	Latitude and Longitude	58	22			
	13	Reserved	80	1124			
Tail	14	Frame Tail	1204	2			

Header is the device packet identification header, which is fixed as 0xA5,0xFF, 0x00,0x5A,0x11,0x11,0x55,0x55, and the first 4 bytes can be used as the packet inspection sequence. The tail is fixed as 0x0F,0xF0.

5.3 UCWP Protocol

The UCWP configures the lidar's Ethernet, motor speed and other parameters, and the data of the configuration package adopts the Big-Endian mode.

The configuration packet includes a 42-byte Ethernet header and a 1206-byte payload, with a length of 1248 bytes. The payload is composed of an 8-byte Header, 1196-byte Data, and a 2-byte Tail.

Note: It is recommended that you configure the lidar through the Windows point cloud display software. Please do not pack and configure the lidar parameters by yourself.

Figure 5.3 Data Format of the Configuration Package

	Ethernet Header: 42 bytes					
Name	S/N	Information	Offset	Length (byte)		
Ethernet II	0	Destination	0	6		
MAC	1	Source	6	6		
Ethernet Packet Type	2	Туре	12	2		
Internet Protocol	3	Version, Header Length, Differentiated Services, Field, Total Length, Identification, Flags, Fragment Offset, Time to Live, Protocol, Header, Checksum, Source IP Address, Destination IP Address	14	20		
UDP Port	4	Lidar Port (0x0941, represent 2369)	34	2		
Number	5	Computer Port (0x0940, represent 2368)	36	2		
UDP Length	6	Length (0x04BE, represent 1214 bytes)	38	2		
& Sum Check	7	Sum Check	40	2		
Payload: 1206 bytes-						
		Payload: 1206 bytes-				
Name	S/N	Information	Offset	Length (byte)		
Name Header	S/N 0	<u> </u>	Offset 0	Length (byte)		
		Information Configuration Package Identification				
	0 1 2	Information Configuration Package Identification Header Motor Speed Ethernet Configuration	0 8 10	8		
	0 1 2 3	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved	0 8 10 32	8 2 22 8		
	0 1 2 3 4	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary	0 8 10 32 40	8 2 22 8 2		
	0 1 2 3 4 5	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval	0 8 10 32 40 42	8 2 22 8 2 2		
Header	0 1 2 3 4 5 6	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection	0 8 10 32 40 42 44	8 2 22 8 2 2 1		
	0 1 2 3 4 5 6 7	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode	0 8 10 32 40 42 44 45	8 2 22 8 2 2 2 1		
Header	0 1 2 3 4 5 6 7 8	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable	0 8 10 32 40 42 44 45 46	8 2 22 8 2 2 2 1 1		
Header	0 1 2 3 4 5 6 7 8	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable Phase Lock Angle Setting	0 8 10 32 40 42 44 45 46 47	8 2 22 8 2 2 1 1 1 2		
Header	0 1 2 3 4 5 6 7 8 9	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable Phase Lock Angle Setting Reserved	0 8 10 32 40 42 44 45 46 47 49	8 2 22 8 2 2 1 1 1 1 2		
Header	0 1 2 3 4 5 6 7 8 9 10	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable Phase Lock Angle Setting Reserved GPS Time	0 8 10 32 40 42 44 45 46 47 49 52	8 2 22 8 2 2 1 1 1 2 3 6		
Header	0 1 2 3 4 5 6 7 8 9 10 11	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable Phase Lock Angle Setting Reserved GPS Time Latitude and Longitude	0 8 10 32 40 42 44 45 46 47 49 52 58	8 2 22 8 2 1 1 1 2 3 6 22		
Header	0 1 2 3 4 5 6 7 8 9 10	Information Configuration Package Identification Header Motor Speed Ethernet Configuration Reserved Lidar Rotation / Stationary Configuration Flow Packet Interval Clock Source Selection Standby Mode Phase Lock Enable Phase Lock Angle Setting Reserved GPS Time	0 8 10 32 40 42 44 45 46 47 49 52	8 2 22 8 2 2 1 1 1 2 3 6		

Header is the configuration packet identification header, which is fixed as 0xAA,0x00,0xFF,0x11,0x22,0x22,0xAA,0xAA, and the first 4 bytes are used as the packet inspection sequence. The Tail of the frame is fixed as 0x0F,0xF0.

5.3.1 Configuration Parameters and Status Description

Here below are the configuration parameters and status description of specific lidar information.

Motor Speed

Motor Speed (2 bytes)			
S/N	Byte 1	Byte 2	

28

5pccu, 00 112/ 120 112/ 130 112		Function	Speed: 30 Hz/60 Hz/120 Hz/150 Hz
---------------------------------	--	----------	----------------------------------

The motor rotates clockwise. Five speeds can be set: when it is set to 0x0BB8, the speed is 3000 rpm; when it is set to 0x0960, the speed is 2400 rpm; when it is set to 0x0708, the speed is 1800 rpm; when it is set to 0x04B0, the speed is 1200 rpm; when it is set to 0x0258, the speed is 600 rpm. Other setting data is not supported.

Ethernet Configuration

The length of the source IP address "IP_SRC" is 4 bytes and the length of the destination IP address "IP_DEST" is also 4 bytes. Each lidar has a fixed MAC address "MAC_ADDR" (6 bytes in length), which cannot be configured. Port 1 is the UDP data port number and port 2 is the UDP device port number.

Ethernet Configuration (22 bytes)									
S/N	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
Function		IP_S	RC			IP_C	EST		
S/N	Byte 9	Byte 10	Byte	Byte	Byte	Byte	Byte	Byte	
3/ IN			11	12	13	14	15	16	
Function	MAC_ADDR (Read Only)							Data Port: Port	
Function		IΜA	C_ADDR	(Read On	ly)		1	L	
S/N	Byte	D + 10	Byte	Byte	Byte	Byte			
3/ IN	17	Byte 18	19	20	21	22			
Function	Device Port: Port		Decembed						
		2	Reserved						

Lidar Rotation & Stationary

Lidar Rotation & Stationary (2 bytes)							
S/N	Byte 1	Byte 2					
Function	Function 0: Rotation; 1: Stationary						

0x0000 indicates that the lidar is rotating, and 0x0001 indicates that the lidar is stationary, and the default value of the lidar is rotating scan.

Device Flow Packet Interval

The interval is 1s (for 1 packet).

Clock Source Selection

	Clock Source Selection (2 bytes)
S/N	Byte 0
Function	0: GPS; 1: gPTP, the unit of GPS timestamp is ns and of gPTP timestamp is
I direction	ns

Standby Mode

<u>_</u>	
	Standby Mode (2 Bytes)

S/N	Byte 0
Function	0 means normal mode; 1 means standby mode

Configure 0x00 to indicate normal mode; configure 0x01 to indicate standby mode, where the laser does not emit light.

Phase Lock Enable

	Phase Lock Enable (2 Bytes)
S/N	Byte 0
Function	0: not enabled; 1: enabled

Configure 0x00 to indicate that phase lock is not enabled; configure 0x01 to indicate that phase lock is enabled and the phase lock function is activated.

Phase Lock Angle Setting

	Phase Lock Angle Setting (2 Bytes)	
S/N	Byte 0	Byte 1
Function	Set phase lock angle	

Multiply the angular accuracy of 0.01° by 100 and then write it to the lidar. If the phase lock is at 100, then configure 10000, i.e. 0x2710 in hex. The lidar locks the motor around 100° when the phase lock is enabled.

UTC Time

The lidar receives GPS signals and parses the \$GPRMC information. The UTC time synchronizes with GPS. If there is no GPS timing, UTC time is all 0s. The GPS baud rate supported by the lidar is 9600. There are 8 data bits, 1 stop bit and no parity bit.

UTC Time (6 bytes Read Only)									
S/N	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6			
	Year	Month	Day	Hour	Minute	Second			
Function	0~255 corresponding to the year 2000~2255	1~12 month	1~31 day	0~23 hour	0~59 min	0~59 sec			

Latitude and Longitude

Latitude and Longitude (22 bytes Read Only)								
S/N	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Function	Rese rved		Latitude					

S/N	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15	Byte 16
Function					Longitude			
S/N	Byte 17	Byte 18	Byte 19	Byte 20	Byte 21	Byte 22		
Function					N/S	W/E		

The latitude and longitude are output in the form of ASCII code.

5.3.2 Configuration Package Example

If you want to reset the lidar IP as 192.168.1.105, computer IP as 192.168.1.225, data port number as 6688, device port number as 8899, motor speed as 1200 rpm, according to the definition of the UCWP Packet and each register, it can be reconfigured as follows:

Table 5.4 Configuration Package Example

			Length
Info	Content	Config	(byte)
Header		0xAA,0x00,0xFF,0x11,0x22,0x22,0xAA,0xAA	8
Motor Speed	1200 rpm	0x04,0xB0	2
Lidar IP (IP_SRC)	192.168.1.105	0xC0,0xA8,0x01,0x69	4
Computer IP (IP_DEST)	192.168.1.225	0xC0,0xA8,0x01,0xE1	4
Data Port (port 1)	6688	0x1A20	2
Device Port (port 2)	8899	0x22C3	2
Lidar Rotation / Stationary	Rotation	0x0000	2
Reserved	Reserved	0x00	1180
Tail		0x0F,0xF0	2

When using this protocol to configure the device, byte-level or section-level addressing and writing are not allowed, and the entire list must be written completely. After the list is written, the corresponding function will be updated and take effect immediately.

31

6. Time Synchronization

There are two ways to synchronize the lidar and external equipment: GPS synchronization and gPTP synchronization. If there is no external synchronization input, the lidar internally generates timing information.

Single echo mode: The absolute accurate time of the point cloud data is obtained by adding the 6-byte year, month, day, hour, minute, second information and the 4-byte timestamp (accurate to nanoseconds) of the data packet.

Dual echo mode: The absolute accurate time of the point cloud data is obtained by adding the 6-byte year, month, day, hour, minute, second information and the 4-byte timestamp (accurate to nanoseconds) of the data packet.

6.1 GPS Synchronization

When GPS synchronization is employed, the lidar will start timing in nanoseconds after receiving the PPS second pulse, and the time value will be output as the timestamp of the data packet. The lidar extracts UTC information from the \$GPRMC of the GPS as the UTC time output.

There are two types of CX1S3 lidar GPS_REC interface level protocols, namely TTL level standard and RS232 level standard. The two protocols differ in two aspects, respectively:

TTL level pin definition:

Pin GPS_RX receives the standard serial port data of the TTL level output from GPS module;

Pin GPS_PPS receives the positive TTL synchronous pulse signal output by the GPS module;

RS232 pin definition:

Pin GPS_RX receives the standard serial data of the R232 level output from the GPS module;

Pin GPS_PPS receives the positive synchronization pulse signal output by the GPS module, and the level is required to be 3.0 V ~15.0 V.

If the GPS used outputs according to the RS232 serial port protocol, and the lidar receives data according to the TTL protocol, then a RS232 to TTL conversion module is needed.

The GPS equipment is time-synchronized to mark and calculate the precise emission and data measurement time of each laser. The precise time of the lidar

point cloud can be matched with the pitch, roll, yaw, latitude, longitude and height of the GPS/inertial measurement system.

The default serial configuration baud rate of the GPS data output received by the lidar is 9600, 8N1. The PPS high pulse width is required to be more than 1 ms.

The standard format of GPRMC information is as follows:

Table 6.1 The Standard Format of GPRMC Information

S/N	Name	Description/Format	
1	UTC Time	hhmmss (hour/minute/second)	
2	Positioning State	A=Effective Positioning, V=Invalid Positioning	
3	Latitude	ddmm.mmmm (degree/minute)	
4	Latitude Hemisphere	N (Northern Hemisphere) or S (Southern Hemisphere)	
5	Longitude	dddmm.mmmm (degree/minute)	
6	Longitude Hemisphere	E (East Longitude) or W (West Longitude)	
7	Ground Speed	000.0~999.9 knot	
8	Ground Direction	000.0~359.9 degree, take true north as the reference datum	
9	UTC Date	ddmmyy (day/month/year)	
10	Magnetic Declination	000.0~180.0 degree	
11	Direction of Magnetic Declination	E (East) or W (West)	
12	Mode Indication	Only NMEA0183 version 3.00 outputs, A= autonomic positioning, D= difference, E=estimation, N=invalid data	

6.2 gPTP Synchronization

Generalized Precise Time Protocol (gPTP) is derived from Precise Time Protocol (PTP) and is used to synchronize the time of individual devices within a local area network with high precision.

This series of lidar supports gPTP timing synchronization. Before synchronizing the lidar via gPTP, the time source needs to be set to "PTP" in the lidar's point cloud display software. And the lidar should be connected to a gPTP master as shown in below.

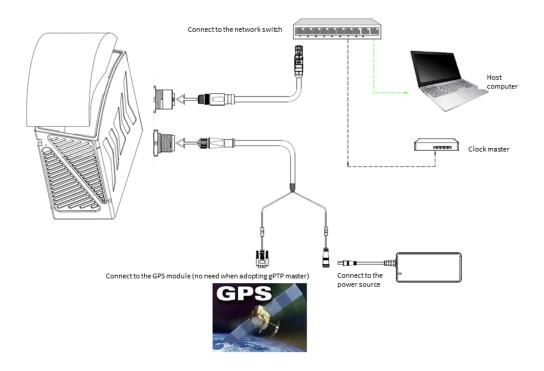


Figure 6.1 Connect the Lidar and gPTP Master

The settings steps on the point cloud display software are as follows: run the software, click on "SetShow" to bring up the parameter modification window, change "Source Selection" to "PTP" as shown in the figure below.

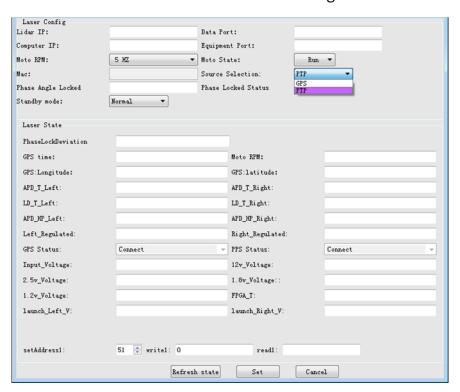


Figure 6.2 Clock Source Selection

Note:

When "PTP" is selected as the clock source, the lidar no longer outputs GPS packets and the time unit changes to nanoseconds (ns). The Timestamp and Date & Time in the point cloud packets will be synchronized strictly according to the time signal provided by the gPTP master clock.

If "PTP" has been selected as the time source and no gPTP master clock is currently available, the lidar will start timing from the internal default start time (00:00:00 on 1 January 2000); if a gPTP time source is provided and then interrupted, the lidar will continue timing from the time of the interruption.

6.3 Lidar Internal Timing

When there is no GPS and other equipment to synchronize, the lidar uses 1 second ($1*10^9$ ns) as the cycle. With the nanosecond as the timing unit, the timing value is output as the time stamp of the data packet. At this time, there is no UTC time reference.

When the lidar disconnected from the external clock source after time synchronization, then the lidar will continue timing from the time of the interruption.

When there is no other external clock source after-power on, the lidar will start internal timing and the timing value will be output as a timestamp of the data packet without UTC time reference. At this time, there would be 2 different cases in terms of time display on the point cloud display software: when the clock source is set to "GPS", the time will be counted from January 1, 2000, 00:00:00; when the time source is set to "PTP", the time will be counted from January 1, 1970, 00:00:00.

7. Angle and Coordinate Calculation

7.1 Vertical Angle

Take **single echo mode** as an example: The vertical angle is obtained from the data packet, whose effective data area contains a total of 1197 bytes, including 171 points, that is, 171*7=1197 bytes. Take the first measure point as an example:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Line_num	Horizontal angle[15:8]	Horizontal angle[7:0]	Distance[23:16]	Distance[15:8]	Distance[7:0]	strength

Byte 1 represents the line number, it is 0x00 by default and the corresponding vertical angle is 0° .

7.2 Horizontal Angle

Byte 2 and Byte 3 represent the horizontal angle, whose data are stored in Big-Endian mode. The unit is 0.01 degrees. For example, 0x11AD=4525, that is 45.25°.

7.3 Distance Value and Intensity

Byte 4, Byte 5, and Byte 6 represent the first echo distance value. Their data are stored in Big-Endian mode. The two high bytes are the integer part, whose unit is "cm"; and the last byte is the decimal part, whose unit is 1/256 cm. To analyze the distance value, for example: the distance value in the obtained data packet is represented by the hexadecimal number 0x02,0x18,0x32, and the first two bytes are composed of 16-bit unsigned data, that is: 0x0218, which is converted to decimal distance value: 536 cm. The last byte is the decimal part, 0x32 equals 50 in decimal, that is, 50*1/256 cm=0.1953125 cm. Then the two parts add up to 536. 1953125 cm.

Byte 7 represents the first echo strength, and the value range is 0-255. (Echo strength can reflect the energy reflection characteristics of the measured object in the actual measurement environment. Therefore, the echo strength can be used to distinguish objects with different reflection characteristics.)

Note: There are 4 more bytes of distance value and intensity information in dual echo mode than in single echo mode. (for more information, see 5.1.2 subframe)

Byte 8, Byte 9 and Byte 10 represent the secondary echo distance value. Their data are stored in Big-Endian mode. The two high bytes are the integer part, whose unit is "cm"; and the last byte is the decimal part, whose unit is 1/256 cm. The distance value analysis method is the same as the first echo.

Byte 11 represents the second echo strength, and the value range is 0-255. (Echo strength can reflect the energy reflection characteristics of the measured object in the actual measurement environment. Therefore, the echo strength can be used to distinguish objects with different reflection characteristics.)

7.4 Cartesian Coordinate Representation

In order to obtain the vertical angle, horizontal angle and distance parameters of the lidar, the angle and distance information in polar coordinates can be converted to the x, y, z coordinates in the right-hand Cartesian coordinate system. The conversion relationship is shown in the following formula:

```
\begin{cases} x = r \cos \alpha \cos \theta; \\ y = r \cos \alpha \sin \theta; \\ z = r \sin \alpha \end{cases}
```

In the above formula, r is the distance, α is the vertical angle, θ is the horizontal rotation angle (the horizontal correction angle needs to be considered when calculating). And x, y, and z are the coordinates of the polar coordinates projected onto the x, y, and z axes.

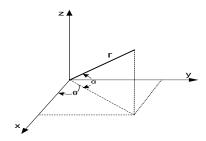


Figure 7.1 Coordinate Mapping

8. Accurate Time Calculation

To accurately calculate the time of the point cloud data, it is necessary to obtain the timestamp of the data packet and the UTC time of the device package output by the lidar. The timestamp and UTC time come from the same synchronization source, such as a GPS.

The laser emission interval of the CX1S3 lidar is about 0.434 μ s (TBD), and the measurement interval of adjacent points is 0.434 μ s (TBD).

8.1 Single Echo Mode

In the single echo mode, a data packet has a total of 171 measurement data. The packaging time of the data packet is about 0.434 μ s*171~=74 .214 μ s, and the data rate is about 1s/74 .214 μ s ~=13474 data packets/second.

8.1.1 Calculation of Data Packet End Time

The timestamp in the data packet is a relative time in nanoseconds, which is defined as the packing time of the laser measurement data of the last channel in the data packet (packet end time), and its duration is less than 1 second. Therefore, to calculate the absolute end time of the data packet, it is necessary to obtain the 6-byte year, month, day, hour, minute and second information and the 4-byte nanosecond timestamp from the data packet first, and then combine the two to get the exact time when the data packet ends.

8.1.2 Accurate Time Calculation of Channel Data

The precise measurement time of each data can be calculated with the exact time of the end of the data packet and the light-emitting time interval of the 171 data.

Each data packet block of the CX1S3 lidar contains 171 measurement data. Therefore, the end time interval of each data packet is the time of the last point. Assuming that the absolute time of the data packet end is T_{Packet_end} , and the end time of the previous packet is $T_{Packet_end_last}$, then the end time interval of each data packet— $T_{Interval}$ = ($T_{Packet_end_last}$) / 171;

The steps for calculating the end time of each data block $T_{Point_end(N)}$ are as follows:

 $T_{Point_end(N)} = (T_{Packet_end} - T_{Interval}*(171-N))$. (N = 1, 2, ..., 171), where $T_{Point_end(N)}$ indicates the end time of the N^{th} data point.

8.2 Dual Echo Mode

In the dual echo mode, a data packet has a total of 109 measurement data. The packaging time of the data packet is about 0.434 μ s*109~=47.306 μ s, and the data rate is about 1s/47.306 μ s ~=21138 data packets/second.

8.2.1 Calculation of Data Packet End Time

The timestamp in the data packet is a relative time in nanoseconds, which is defined as the packing time of the laser measurement data of the last channel in the data packet (packet end time), and its duration is less than 1 second. Therefore, to calculate the absolute end time of the data packet, it is necessary to obtain the 6-byte year, month, day, hour, minute and second information and the 4-byte nanosecond timestamp from the data packet first, and then combine the two to get the exact time when the data packet ends.

8.2.2 Accurate Time Calculation of Channel Data

The precise measurement time of each data can be calculated with the exact time of the end of the data packet and the light-emitting time interval of the 109 data.

Each data packet block of the CX1S3 lidar contains 109 measurement data. Therefore, the end time interval of each data packet is the time of the last point. Assuming that the absolute time of the data packet end is T_{Packet_end} , and the end time of the previous packet is $T_{Packet_end_last}$, then the end time interval of each data packet— $T_{Interval}$ = ($T_{Packet_end_last}$) / 109;

The steps for calculating the end time of each data block T_{Point end(N)} are as follows:

 $T_{Point_end(N)} = (T_{Packet_end} - T_{Interval}*(109-N))$. (N = 1, 2, ..., 109), where $T_{Point_end(N)}$ indicates the end time of the Nth data point.

Appendix A. Maintenance

Shipping Requirements

This series of lidars are packed with the packaging materials specially customized by our company, which can resist certain vibrations and impacts. For longdistance transportation, special packaging materials must be used to avoid irreversible damage during transportation.

Installation

Use screws that meet the specifications to fix the lidar base, and make sure the base has good heat dissipation. Wear powder-free clean gloves during installation to avoid optical cover contamination and mechanical damage.

Storage Conditions

It is recommended to store the products in a ventilated and dry place where the temperature is 23 ± 5 °C, and the relative humidity is $30\% \sim 70\%$. Do not store in environments where humidity, pH, etc. exceed the protection level.

Dirt Treatment

If the mask is dirty during use, such as with fingerprints, muddy water, dry leaves or insect corpses, etc., the lidar's ranging effect will be directly affected. Please clean it according to the following steps:

Tools: PVC gloves, clean cloth, absolute ethanol (99%)

Environment: ventilated and dry, away from fire

- (1) Put on PVC gloves and fix the lidar base with your fingers; if it is not stubborn stains, use a dust-free cloth or dry air to gently remove the stains;
- (2) For stubborn stains, evenly spray the ethanol in the spray bottle on the location to be cleaned and wait for the stain to be dissolved. Then use a dustless cloth dipped in ethanol solvent, and gently wipe the mask. If the cloth is contaminated, please replace it in time. After cleaning the stain, use a new dustless cloth to remove any remaining liquid.

Appendix B. Troubleshooting

For any of the following problems during the use of the lidar, please refer to the corresponding solutions for troubleshooting. If you are unable to implement the following steps, or if you are still unable to solve the problem after implementing the steps, please contact our technical support.

Problem	Solution			
The indicator light on the interface box is not working	Confirm: power supply meets electrical requirements interface box is in good condition with no damage power cord contact is good and undamaged; power adapter is working properly re-power the lidar to see if the fault disappears			
Motor is not running	 Confirm: power supply meets electrical requirements good contact between interface box and the lidar re-power the lidar to see if the fault disappears 			
Motor running but no data output on the host PC or Wireshark	 Confirm: power supply meets electrical requirements the network cable is well connected the IP address of the computer matches the destination IP address of the lidar your computer's firewall and other security software that may affect Ethernet broadcasts is turned off if the lidar emits laser beam with an IR camera or IR card re-power the lidar to see if the fault disappears 			
Wireshark has data but the host PC has no data	 Confirm: your computer's firewall is turned off the IP address of the computer matches the destination IP address of the lidar data port and device port in the host computer are set correctly lidar port is not occupied by another process WinPcap plugin is installed re-power the lidar to see if the fault disappears 			
Point cloud missing	 Confirm: lidar housing is clean and free of stains horizontal FOV setting in the host computer the number of packets received by the lidar is normal whether the lidar emits laser beams, this can be checked with an IR camera or an IR card whether there are network conflicts whether there is a network blockage caused by other devices transmitting large amounts of data connect the PC to the lidar only and observe if the point cloud is missing re-power the lidar to see if the fault disappears 			
Abnormal point cloud image on the host PC (flickering point cloud;	Confirm:the lidar housing is clean and free of stainslidar surroundings are not complex			

irregular point cloud alignment)	 horizontal FOV setting in the host computer whether the network is blocked by other devices transmitting data
Error occurs when running the Windows Client, no interface display	 Confirm: the graphics card is used correctly, discrete graphics card is recommended the graphics card meets the minimum configuration requirements the driver for the graphics card is correctly installed
Crash or no response of the Windows Client when modifying lidar parameters	

Revision History

Rev.	Release Date	Revised Content	Issued/Revised By
V1.0.0	2023-12-06	Initial Version	LeiShen

^{*}This product information is subject to change without notice.

Make Safer Driving Smarter Machine and Better Life!

